Abstract:We study the fine-grained text-to-audio (T2A) generation task. While recent models can synthesize high-quality audio from text descriptions, they often lack precise control over attributes such as loudness, pitch, and sound events. Unlike prior approaches that retrain models for specific control types, we propose to train ControlNet models on top of pre-trained T2A backbones to achieve controllable generation over loudness, pitch, and event roll. We introduce two designs, T2A-ControlNet and T2A-Adapter, and show that the T2A-Adapter model offers a more efficient structure with strong control ability. With only 38M additional parameters, T2A-Adapter achieves state-of-the-art performance on the AudioSet-Strong in both event-level and segment-level F1 scores. We further extend this framework to audio editing, proposing T2A-Editor for removing and inserting audio events at time locations specified by instructions. Models, code, dataset pipelines, and benchmarks will be released to support future research on controllable audio generation and editing.
Abstract:Current AI-Generated Image (AIGI) detection approaches predominantly rely on binary classification to distinguish real from synthetic images, often lacking interpretable or convincing evidence to substantiate their decisions. This limitation stems from existing AIGI detection benchmarks, which, despite featuring a broad collection of synthetic images, remain restricted in their coverage of artifact diversity and lack detailed, localized annotations. To bridge this gap, we introduce a fine-grained benchmark towards eXplainable AI-Generated image Detection, named X-AIGD, which provides pixel-level, categorized annotations of perceptual artifacts, spanning low-level distortions, high-level semantics, and cognitive-level counterfactuals. These comprehensive annotations facilitate fine-grained interpretability evaluation and deeper insight into model decision-making processes. Our extensive investigation using X-AIGD provides several key insights: (1) Existing AIGI detectors demonstrate negligible reliance on perceptual artifacts, even at the most basic distortion level. (2) While AIGI detectors can be trained to identify specific artifacts, they still substantially base their judgment on uninterpretable features. (3) Explicitly aligning model attention with artifact regions can increase the interpretability and generalization of detectors. The data and code are available at: https://github.com/Coxy7/X-AIGD.
Abstract:Our study examines how generative AI (GenAI) influences performance, creative self-efficacy, and cognitive load in architectural conceptual design tasks. Thirty-six student participants from Architectural Engineering and other disciplines completed a two-phase architectural design task, first independently and then with external tools (GenAI-assisted condition and control condition using an online repository of existing architectural projects). Design outcomes were evaluated by expert raters, while self-efficacy and cognitive load were self-reported after each phase. Difference-in-differences analyses revealed no overall performance advantage of GenAI across participants; however, subgroup analyses showed that GenAI significantly improved design performance for novice designers. In contrast, general creative self-efficacy declined for students using GenAI. Cognitive load did not differ significantly between conditions, though prompt usage patterns showed that iterative idea generation and visual feedback prompts were linked to greater reductions in cognitive load. These findings suggest that GenAI effectiveness depends on users' prior expertise and interaction strategies through prompting.
Abstract:Deep research systems are widely used for multi-step web research, analysis, and cross-source synthesis, yet their evaluation remains challenging. Existing benchmarks often require annotation-intensive task construction, rely on static evaluation dimensions, or fail to reliably verify facts when citations are missing. To bridge these gaps, we introduce DeepResearchEval, an automated framework for deep research task construction and agentic evaluation. For task construction, we propose a persona-driven pipeline generating realistic, complex research tasks anchored in diverse user profiles, applying a two-stage filter Task Qualification and Search Necessity to retain only tasks requiring multi-source evidence integration and external retrieval. For evaluation, we propose an agentic pipeline with two components: an Adaptive Point-wise Quality Evaluation that dynamically derives task-specific evaluation dimensions, criteria, and weights conditioned on each generated task, and an Active Fact-Checking that autonomously extracts and verifies report statements via web search, even when citations are missing.
Abstract:All-in-one image restoration aims to recover clean images from diverse unknown degradations using a single model. But extending this task to videos faces unique challenges. Existing approaches primarily focus on frame-wise degradation variation, overlooking the temporal continuity that naturally exists in real-world degradation processes. In practice, degradation types and intensities evolve smoothly over time, and multiple degradations may coexist or transition gradually. In this paper, we introduce the Smoothly Evolving Unknown Degradations (SEUD) scenario, where both the active degradation set and degradation intensity change continuously over time. To support this scenario, we design a flexible synthesis pipeline that generates temporally coherent videos with single, compound, and evolving degradations. To address the challenges in the SEUD scenario, we propose an all-in-One Recurrent Conditional and Adaptive prompting Network (ORCANet). First, a Coarse Intensity Estimation Dehazing (CIED) module estimates haze intensity using physical priors and provides coarse dehazed features as initialization. Second, a Flow Prompt Generation (FPG) module extracts degradation features. FPG generates both static prompts that capture segment-level degradation types and dynamic prompts that adapt to frame-level intensity variations. Furthermore, a label-aware supervision mechanism improves the discriminability of static prompt representations under different degradations. Extensive experiments show that ORCANet achieves superior restoration quality, temporal consistency, and robustness over image and video-based baselines. Code is available at https://github.com/Friskknight/ORCANet-SEUD.
Abstract:TeleChat3-MoE is the latest series of TeleChat large language models, featuring a Mixture-of-Experts (MoE) architecture with parameter counts ranging from 105 billion to over one trillion,trained end-to-end on Ascend NPU cluster. This technical report mainly presents the underlying training infrastructure that enables reliable and efficient scaling to frontier model sizes. We detail systematic methodologies for operator-level and end-to-end numerical accuracy verification, ensuring consistency across hardware platforms and distributed parallelism strategies. Furthermore, we introduce a suite of performance optimizations, including interleaved pipeline scheduling, attention-aware data scheduling for long-sequence training,hierarchical and overlapped communication for expert parallelism, and DVM-based operator fusion. A systematic parallelization framework, leveraging analytical estimation and integer linear programming, is also proposed to optimize multi-dimensional parallelism configurations. Additionally, we present methodological approaches to cluster-level optimizations, addressing host- and device-bound bottlenecks during large-scale training tasks. These infrastructure advancements yield significant throughput improvements and near-linear scaling on clusters comprising thousands of devices, providing a robust foundation for large-scale language model development on hardware ecosystems.
Abstract:Physics-informed neural networks (PINNs) have led to significant advancements in scientific computing by integrating fundamental physical principles with advanced data-driven techniques. However, when dealing with problems characterized by multi-scale or high-frequency features, PINNs encounter persistent and severe challenges related to stiffness in gradient flow and spectral bias, which significantly limit their predictive capabilities. To address these issues, this paper proposes a Dynamic Balancing Adaptive Weighting Physics-Informed Kolmogorov-Arnold Network (DBAW-PIKAN), designed to mitigate such gradient-related failure modes and overcome the bottlenecks in function representation. The core of DBAW-PIKAN combines the Kolmogorov-Arnold network architecture, based on learnable B-splines, with an adaptive weighting strategy that incorporates a dynamic decay upper bound. Compared to baseline models, the proposed method accelerates the convergence process and improves solution accuracy by at least an order of magnitude without introducing additional computational complexity. A series of numerical benchmarks, including the Klein-Gordon, Burgers, and Helmholtz equations, demonstrate the significant advantages of DBAW-PIKAN in enhancing both accuracy and generalization performance.
Abstract:Recent advances in text-to-speech (TTS) have yielded remarkable improvements in naturalness and intelligibility. Building on these achievements, research has increasingly shifted toward enhancing the expressiveness of generated speech, such as dialectal and emotional TTS. However, cross-style synthesis combining both dialect and emotion remains challenging and largely unexplored, mainly due to the scarcity of dialectal data with emotional labels. To address this, we propose Hierarchical Expressive Vector (HE-Vector), a two-stage method for Emotional Dialectal TTS. In the first stage, we construct different task vectors to model dialectal and emotional styles independently, and then enhance single-style synthesis by adjusting their weights, a method we refer to as Expressive Vector (E-Vector). For the second stage, we hierarchically integrate these vectors to achieve controllable emotionally expressive dialect synthesis without requiring jointly labeled data, corresponding to Hierarchical Expressive Vector (HE-Vector). Experimental results demonstrate that HE-Vectors achieve superior performance in dialect synthesis, and promising results in synthesizing emotionally expressive dialectal speech in a zero-shot setting.
Abstract:Alzheimer's dementia (AD) is a neurodegenerative disorder with cognitive decline that commonly impacts language ability. This work extends the paired perplexity approach to detecting AD by using a recent large language model (LLM), the instruction-following version of Mistral-7B. We improve accuracy by an average of 3.33% over the best current paired perplexity method and by 6.35% over the top-ranked method from the ADReSS 2020 challenge benchmark. Our further analysis demonstrates that the proposed approach can effectively detect AD with a clear and interpretable decision boundary in contrast to other methods that suffer from opaque decision-making processes. Finally, by prompting the fine-tuned LLMs and comparing the model-generated responses to human responses, we illustrate that the LLMs have learned the special language patterns of AD speakers, which opens up possibilities for novel methods of model interpretation and data augmentation.
Abstract:Image-text models excel at image-level tasks but struggle with detailed visual understanding. While these models provide strong visual-language alignment, segmentation models like SAM2 offer precise spatial boundaries for objects. To this end, we propose TextRegion, a simple, effective, and training-free framework that combines the strengths of image-text models and SAM2 to generate powerful text-aligned region tokens. These tokens enable detailed visual understanding while preserving open-vocabulary capabilities. They can be directly applied to various downstream tasks, including open-world semantic segmentation, referring expression comprehension, and grounding. We conduct extensive evaluations and consistently achieve superior or competitive performance compared to state-of-the-art training-free methods. Additionally, our framework is compatible with many image-text models, making it highly practical and easily extensible as stronger models emerge. Code is available at: https://github.com/avaxiao/TextRegion.